5 bizarre feiten over kwantummechanica

5-bizarre-feiten-over-kwantummechanica-4

De kwantumwereld is absurd; daar zijn zelfs vooraanstaande natuurkundigen het over eens. Hieronder beschrijf ik vijf eigenschappen van kwantummechanica die wetenschappelijk zijn aangetoond en gelijktijdig onmogelijk te begrijpen zijn door de menselijke geest.

1. Zowel golf als deeltje
Een los kwantumdeeltje kan zich zowel gedragen als een golf als een deeltje. Dit is aangetoond met het beroemde ‘two-slit’ experiment waarin een atomenpistool één enkele atoom per keer afvuurt op een plaatje waar de atoom belandt tussen twee openingen in. Wanneer men door blijft gaan met het afvuren van losse atomen ontstaat op de achterwand een zelfde patroon als wanneer men er licht doorheen zou schijnen.

5-bizarre-feiten-over-kwantummechanica-15-bizarre-feiten-over-kwantummechanica-2

Wanneer men vervolgens één van de openingen afsluit gedragen de losse kwantumdeeltjes zich hetzelfde als zandkorrels zich zouden gedragen.

De deeltjes kunnen ook in beide staten tegelijk verkeren, de zogeheten ‘superpositie’. De vreemdheid hiervan werd door de Oostenrijkse natuurkundige Schrödinger benadrukt in een beroemd gedachte-experiment. Schrödinger toonde aan dat een kat in een afgesloten doos met een gifcapsule zowel dood als levend op hetzelfde moment kan zijn.

5-bizarre-feiten-over-kwantummechanica-5

2. Niet te observeren
Nog vreemder dan de dubbele staat, is dat het kwantumdeeltje zich anders gedraagt als het geobserveerd wordt. Wanneer deeltjes zich in golven bewegen toont het patroon aan dat ze door beide openingen tegelijk moeten gaan. Wil je dit echter vast leggen met een detector, dan gaat het deeltje zich spontaan anders gedragen, namelijk weer als een zandkorrel in plaats van als een golf. Alsof het niet betrapt wil worden in zijn speciale goochelaarstruc. Hoe dit kan? Er zijn verschillende theorieën voor, maar nog geen hele bevredigende…

5-bizarre-feiten-over-kwantummechanica-3

3. Het noodlot bestaat niet
Stel dat je de computerkracht had om de positie van ieder deeltje in het universum te kennen. Dan zou het mogelijk zijn precies te weten hoe de voorbestemde toekomst zich zou gaan voltrekken. Kwantummechanica heeft bewezen dat deze deterministische toekomst niet bestaat omdat het volstrekt onvoorspelbaar is waar deeltjes, zoals elektronen, zich in de toekomst gaan bevinden. We kunnen alleen de waarschijnlijkheid bepalen waar de elektronen zich zullen bevinden. We kunnen de toekomst dus nooit met zekerheid voorspellen, maar wel – in theorie – de waarschijnlijkheid berekenen van verschillende uitkomsten. Dit is de essentie van quantum indeterminism.

4. Communicatie zonder signaal
Lichtsnelheid is de absolute snelheid in het universum. Dus als je telepathisch een boodschap wilt overbrengen naar je broer die op de zon staat, dan is je boodschap acht minuten onderweg (150 miljoen kilometer met 300 000 kilometer per seconde). In het geval van de kwantumwereld hebben natuurkundigen er geen twijfel meer over dat instante communicatie tussen meerdere objecten op afstand een algemene eigenschap is. Dat komt omdat ze verstrengeld met elkaar zijn geraakt. Deze eigenschap heet nonlocality en stelt dat twee deeltjes met elkaar in contact kunnen blijven ongeacht hoe ver ze van elkaar verwijderd zijn. Dit is wederom een eigenschap van kwantummechanica dat indruist tegen onze menselijke intuïtie.

5. Quantum tunnelling
Wanneer je een bal een heuvel oprolt moet het voldoende energie gegeven worden om het hoogste punt te bereiken en dan aan de andere kan weer naar beneden te rollen. Wanneer de bal te weinig energie gegeven is, rolt hij logischerwijs weer naar beneden. In de wereld van de kwantummechanica is er altijd de waarschijnlijkheid dat het object spontaan aan de ene kant zou verdwijnen en weer aan de andere kant zou opduiken. Dit zou ook gebeuren als het object te weinig energie zou hebben om de top te bereiken.

Tja, wat kun je hier over zeggen? Niet veel behalve dat we nog weinig weten over hoe de natuur echt werkt. Het wachten is op een theorie die zowel Einsteins relativiteitstheorie als kwantummechanica combineert in één ultieme theorie over de werking van het universum. Het kan nog even duren voordat deze gevonden wordt; ik hoop dat het in mijn leven nog lukt. In de tussentijd ga ik me verdiepen in de biocentrisme-gedachte van Robert Lanza die de mens centraal stelt en daarmee een verklaring geeft voor een aantal van bovenstaande vaagheden, waaronder de tweede waarin de rol van de observant duidelijk een verschil maakt. Wordt vervolgd.

5-bizarre-feiten-over-kwantummechanica-0

Bron: ‘Quantum: A Guide For the Perplexed’ by Jim Al-Khalili

Advertenties

Het brein van Albert Einstein (1): Relativiteitstheorie

‘Ons verlangen naar begrip is eeuwigdurend’
Albert Einstein

Hij heeft zijn leven lang geprobeerd licht te begrijpen en hij is daar als geen ander in geslaagd. Toen hij 16 was vroeg hij zich af hoe het zou zijn om op een lichtstraal mee te reizen. De vraag bleef hem 10 jaar lang achtervolgen. De simpelste vragen zijn altijd het lastigste te beantwoorden, aldus Albert Einstein (1879 – 1955).

De documentaire ‘Einstein Releaved’ schetst een beeld van het leven van het natuurkundig wonderbrein. Zijn ideeën over licht, ruimte, tijd en zwaartekracht hebben ons beeld van het universum voor altijd veranderd. Maar wat heeft hij precies bedacht en hoe is hij tot die ideeën gekomen?

Einstein 4

Einstein’s jeugd
De vader van Einstein produceerde dynamo’s, dus de jonge Albert was omringt door elektriciteit en mensen die hem graag dingen uitlegden. Elektromagnetisme was de familie business en de vroege kennismaking met deze natuurkracht maakte dat hij al jong begon met het vormen van zijn briljante ideeën. De fabriek fungeerde als laboratorium waar Einstein dingen kon visualiseren, wat zo belangrijk werd in zijn latere wetenschap.

Hij was een vroege leerling; toen hij 10 was begon hij zijn programma van exponentiele zelfontwikkeling. Hij las ieder boek over wetenschap dat hij kon vinden. Op zijn vijftiende verhuisde hij naar Italië, waar zijn vader zijn fabriek had geheralloceerd. De jonge Albert gaf zijn Duitse nationaliteit op om aan de dienstplicht te ontsnappen. Zijn vader stuurde hem naar Zwitserland om zijn middelbare school af te maken, Hij kwam op een uitstekende school terecht dat een mooi laboratorium had waar Einstein rustig kon kennismaken met de natuurkunde.

Speciale relativiteitstheorie
Toen hij leerde dat licht een elektromagnetische golf is die door de ruimte reist, had Einstein zijn levenswerk gevonden. Over licht werd altijd verondersteld dat het zich gedroeg als een golf die zich door de ether voortbewoog, maar Einstein stelde als eerste wetenschapper dat de ether niet bestond. Uit talloze onderzoeken bleek ook dat licht zich helemaal niet in golven beweegt, maar met constante snelheid, en daarmee een uitzondering vormt op alle andere natuurfenomenen.

Na de universiteit kwam Einstein terecht op een patentenbureau. Deze baan was zijn talent weliswaar niet waardig, maar stelde hem wel in staat te experimenteren met natuurkunde onder en buiten het werk. Zijn ideeën begonnen nu echt vorm te krijgen. In 1905 aanvaarde Einstein dat lichtsnelheid constant was overal in de natuur. Maar als lichtsnelheid constant was, moest er volgens Einstein iets anders zijn dat niet constant was. En hij vermoedde dat dat wel eens ‘tijd’ zou kunnen zijn. Wat als de snelheid van licht constant is, maar het verstrijken van tijd niet?

Dit was een radicale gedachte. Voor iedereen behalve Einstein was tijd absoluut onveranderlijk. Het idee dat tijd onzeker kon zijn was moeilijk te bevatten. Zelfs voor Einstein. Maar tijdens een wandeling met een vriend drong het antwoord tot hem door. Tijd is relatief. Voor iemand die beweegt verloopt hij anders dan voor iemand die stilstaat. In een beroemd experiment zette Einstein twee palen een stuk uit elkaar langs een spoorbaan. Als de bliksem tegelijk in beide palen zou inslaan, zou iemand die er recht voor staat de inslagen tegelijk waarnemen. Maar iemand die in een trein voorbij zou komen, en op het moment van inslag precies tussen de twee palen in zou zijn, zou eerst de ene inslag zien en dan pas de andere. Niet simultaan dus.

Einstein 1

Met dit gedachte-experiment bewees Einstein zijn relativiteitstheorie. ‘Eigenlijk was het heel eenvoudig’, zei Einstein. ‘Het enige wat mijn theorie aantoont is dat tijd voor de één anders verstrijkt dan voor de ander, afhankelijk van de snelheid waarmee de persoon zich voortbeweegt.’ Vijf weken na het experiment had Einstein zijn speciale relativiteitstheorie uitgewerkt. Hoe sneller je beweegt, hoe langzamer je klok tikt vergeleken met een stilstaande waarnemer. Dat betekent dat tijd langzamer verloopt als je in de auto op weg naar je werk bent, dan wanneer je achter je bureau zit. Met 50 kilometer per uur zijn de verschillen echter niet waarneembaar, maar bij grote snelheden wel.

Einstein beantwoorde vervolgens de vraag uit zijn jeugd: ‘Hoe zou het zijn om op een lichtstraal mee te reizen?’ Het antwoord is dat dit nooit zou kunnen, want bij lichtsnelheid krimpt lengte tot nul, en staat de tijd stil.

Huh? Staat de tijd stil? Ja, dat is het meest bizarre aan deze theorie. Als je zou kunnen reizen op lichtsnelheid staat de tijd voor jou stil. Stel je voor dat je een vriend met een raket zou zien opstijgen uit jouw achtertuin en hij zou met lichtsnelheid kunnen reizen – en je zou zijn reis volgen met een telescoop en de afstand is een lichtjaar, dan zou bij zijn aankomst voor jou een jaar verstreken zijn, maar voor hem helemaal geen tijd. Hij zou aankomen op precies hetzelfde moment als hij vertrokken is.

En dat is Einstein’s ontdekking van de speciale relativiteitstheorie.